

Registration No.:

--	--	--	--	--	--	--	--	--

Total Number of Pages: 03

Course: B.Tech/IDD
Sub_Code: CIPC3003

5th Semester Regular Examination: 2025-26

SUBJECT: Advanced Structural Analysis

BRANCH(S): CIVIL, CE

Time: 3 Hours

Max Marks: 100

Q.Code: U276

Answer Question No.1 (Part-I) which is compulsory, any eight from Part-II and any two from Part-III. Assume suitably the missing values.

The figures in the right hand margin indicate marks.

Part-I

Q1 Answer the following questions: (2 x 10)

- a) Enumerate different reasons for sway in portal frames.
- b) Write the reasons for preferring to Kani's 'Rotation Contribution' method over "Moment distribution method".
- c) Explain "relative stiffness".
- d) Distinguish between two hinged and three hinged arches?
- e) A two hinged semicircular arch of span 20 m is loaded with a concentrated load of 50 kN at the crown. Write the value of horizontal thrust.
- f) State Muller Breslau's principle?
- g) Differentiate between plastic hinge and mechanical hinge.
- h) Define "plastic moment" of a section.
- i) Differentiate between local coordinates and global coordinates.
- j) The stiffness matrix for an element is given by $\frac{EI}{L} \begin{bmatrix} 4 & 2 \\ 2 & 8 \end{bmatrix}$ what shall be the flexibility matrix for that element, keeping all other conditions similar.

Part-II

Q2 Only Focused-Short Answer Type Questions- (Answer Any Eight out of Twelve) (6 x 8)

- a) Differentiate between force and displacement methods of structural analysis.
- b) Explain the Kani's method for the frames with columns of equal height and subjected to horizontal loads with fixed ends and also hinged ends.
- c) Analyze the beam in figure 1 using moment distribution method. Assume E constant.

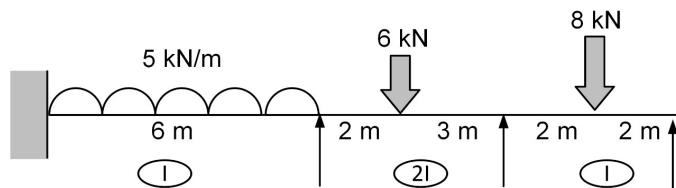


Figure 1

d) A cable ABC of uniform cross section is used to span a distance of 40 m. The cable is subjected to uniformly distributed load of 10 kN/m run. The left support 'A' is below the right support 'B' by 2 m and the lowest point on the cable 'C' is located below left support 'A' by 1 m. Evaluate the reactions and the maximum and minimum values of tension in the cable.

e) With neat sketch list out and explain various features of a suspension bridge.

f) A simply supported beam has a span of 25 m. Draw the influence line diagram for the bending moment and shear force at a section 10 m from the left. Also determine maximum bending moment and shear force at this section due to two point-loads of 10 kN and 5 kN at a fixed distance of 2.5m apart rolling from left to right with 5kN load at leading.

g) Explain: (I) Lower bound theorem, (II) Upper bound theorem and uniqueness theorem.

h) Derive the shape factor for a circular section of 'D' diameter.

i) A beam of uniform section having span "L" and plastic moment M_p is fixed at one end and simply supported at other end, what is the maximum concentrated load W that beam can carry if the load W acts at a distance of $L/3$ from the fixed end.

j) Develop the flexibility matrix for the cantilever with coordinates as shown in Figure 2.

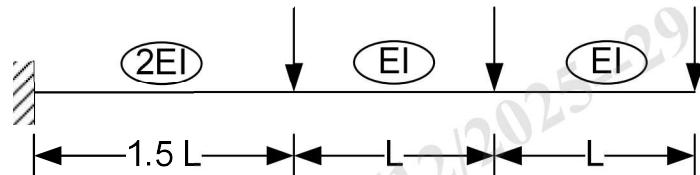


Figure 2

k) Explain properties of stiffness matrix.

l) Explain briefly about "application of stiffness matrix for the analysis of plane truss structure".

Part-III

Only Long Answer Type Questions (Answer Any Two out of Four)

Q3 Analyze the portal frame in Figure 3 using slope deflection method. E constant. (16)

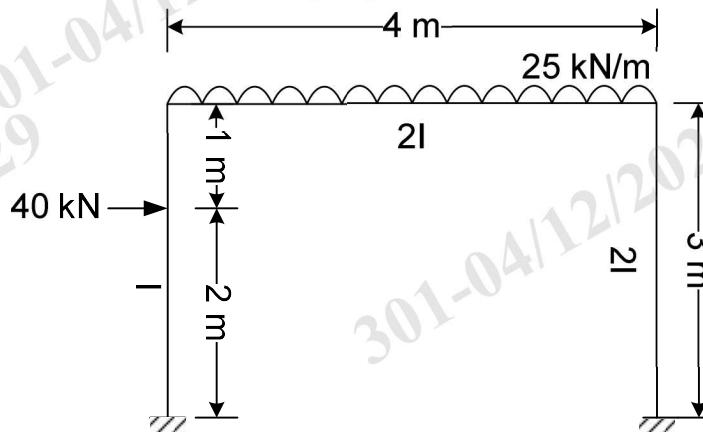


Figure 3

Q4 A two hinged parabolic arch has a varying moment of inertia (I) given by the expression $I = I_0 \sec \theta$. It has a span 50 m and central rise of 10 m. Calculate the maximum positive and negative bending moment at a section 10 m from left support due to a moving point load of 10 kN. (16)

Q5

Find the collapse load for the portal frame shown in Figure 4. All symbols have their usual meaning.

(16)

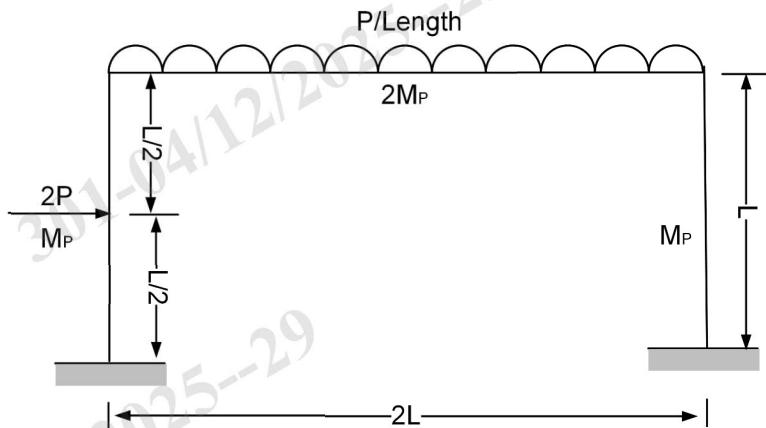


Figure 4

Q6

A continuous beam ABC is fixed at extreme left end (i.e. end A) and simply supported at extreme right end (i.e. at end C). The span AB is 5 m and BC is 4 m. Span AB is loaded with a uniformly distributed load of 50 kNm throughout the span and span BC is loaded with a concentrated load of 80 kNm at a distance 2 m from the B support. Calculate end moments by stiffness matrix method and draw bending moment diagram. Assume EI constant.

(16)