

Registration No.:

--	--	--	--	--	--	--	--	--

Total Number of Pages: 02

Course: B.Tech
Sub_Code: PCAC2011

4th Semester Regular Examination: 2024-25

SUBJECT: CLOUD INFRASTRUCTURE AND APPLICATIONS

BRANCH(S): AEIE, CIVIL, CSE, CSEAI, CST, ECE, EEE, ELECTRICAL, ETC, MECH

Time: 3 Hours

Max Marks: 100

Q.Code: S272

Answer Question No.1 (Part-I) which is compulsory, any eight from Part-II and any two from Part-III.

The figures in the right hand margin indicate marks.

Part-I

- Q1** Answer the following questions: (2 x 10)
- a) What is a key-value store? Give one example.
 - b) Differentiate between NoSQL and relational databases.
 - c) What is the purpose of data sharding in distributed systems?
 - d) State the function of a reducer in the MapReduce paradigm.
 - e) List two features of Ceph storage.
 - f) What is the purpose of HDFS in cloud data management?
 - g) What is the function of Kubernetes in cloud deployment?
 - h) Define the term “virtual hard drive” in cloud storage.
 - i) What is archival storage, and when is it used?
 - j) List the characteristics of software-defined architecture.

Part-II

- Q2** Only Focused-Short Answer Type Questions- (Answer Any Eight out of Twelve) (6 x 8)
- a) Compare and contrast the MapReduce paradigm with modern stream processing frameworks.
 - b) Explain how the Paxos consensus algorithm works.
 - c) How do distributed hash tables (DHTs) enable efficient key-value storage?
 - d) Discuss the implications of Brewer's CAP theorem in designing cloud systems.
 - e) Describe a cloud middleware stack and its components.
 - f) How does MaaS contribute to physical infrastructure automation? Explain.
 - g) Describe the architecture of a PaaS offering and its developer-focused advantages.
 - h) How do JVM-based applications containerize for cloud deployment? Explain.
 - i) Compare cloud object storage with traditional block storage.
 - j) Explain how containers and orchestration tools help manage scalable big data pipelines.
 - k) Compare Hive with traditional RDBMS in analyzing large-scale datasets.
 - l) How does a serverless architecture facilitate scalable data ingestion and transformation? Explain.

Part-III

Only Long Answer Type Questions (Answer Any Two out of Four)

(16 x 2)

- Q3** Describe a fault-tolerant distributed application using C++ that implements replication and recovery. Explain the logic and assumptions. **(16)**
- Q4** Describe a complete cloud infrastructure for a mid-sized enterprise using virtualization and container orchestration with a suitable diagram. **(16)**
- Q5** Compare the performance and management of a traditional three-tier app deployed on VMs vs. a microservices app deployed in containers. **(16)**
- Q6** Compare and contrast cloud-native vs. on-premise big data solutions in terms of architecture, cost, and elasticity. **(16)**