

Registration No.:

--	--	--	--	--	--	--	--	--

Total Number of Pages:

Course: B.Tech/IDD
Sub Code: EOPC3002

5th Semester Regular Examination: 2025-26

SUBJECT: DIGITAL SIGNAL PROCESSING

BRANCH(S): AEIE, ECE, ETC, ECE

MAX MARKS: 100

TIME: 3 HOURS

Q.Code: U127

Answer Q1 (Part-I) which is compulsory, any eight from Part-II and any two from Part-III.
The figures in the right-hand margin indicate marks.

Part- I

Q1 Answer the following questions: (Answer All-10) (02 x 10)

- a) What is the ROC in Z-transform of an impulsive signal?
- b) How many complex additions and multiplications are there in 8-point DFT and 8-point radix-2 DIT-FFT?
- c) Find the circular convolution of $x(n) = \{-5, -2\uparrow, -1\}$ and $k(n) = \{1\uparrow, 2\}$.
- d) Define the frequency shifting property of DFT.
- e) What is a non-recursive discrete time system?
- f) Find the Discrete Fourier Transform of $\delta(n) - \delta(n-2)$.
- g) Find Z-transform of $2\delta(n+3) + 3u(n-2)$.
- h) Find the DFT of $\{4, 1, 2\uparrow, 3\}$.
- i) Why FIR filters are considered to be stable in comparison to the IIR filters?
- j) Find the circular convolution of $u(n) = \{1, 1\uparrow, 2, 1\}$ and $h(n) = \{3\uparrow, 2, 1, 3\}$.

Part- II

Q2 Only Focused-Short Answer Type Questions- (Answer Any Eight out of Twelve) (06 x 08)

- a) Design the direct form structure of the FIR system described by
$$H(z) = 1 + \frac{1}{2}z^{-1} + \frac{3}{4}z^{-2} + \frac{1}{4}z^{-3} + \frac{1}{2}z^{-4} + \frac{1}{12}z^{-5}.$$
- b) Show that for linear phase FIR filter $H(n) = H(N-1-n)$ and $\alpha = \frac{N-1}{2}$.
- c) For an analog system response $H(S) = \frac{b}{S+a}$ prove that $H(Z) = \frac{b}{\frac{2}{T} \left(\frac{1-Z^{-1}}{1+Z^{-1}} \right) + a}$.
- d) Design the direct form - II filter with transfer function $H(z) = \frac{1+2z^{-1}}{1-4z^{-1}-2z^{-2}}$.
- e) If $x[n]$ is an even length sequence with an N-Point DFT $X(k)$, then determine the N-Point DFT of $y[n] = x[n] - x[n - \frac{N}{2}]$ in terms of $X(k)$.

f) Determine the inverse Z-transform of by the partial fraction expansion method

$$X(z) = \frac{z+2}{2z^2 - 7z + 3}, \text{ if the ROCs are (a) } |z| > 3 \text{ and (b) } \frac{1}{2} < |z| < 3.$$

g) Determine the direct form II realization for the IIR transfer function

$$H(z) = \frac{0.28z^2 + 0.319z + 0.04}{0.5z^3 + 0.3z^2 + 0.17z - 0.2}.$$

h) Use the overlap add method, to find the long-division convolution between

$$x(n) = \{2, -1, 1, 1, 2, -1, 0, 1, 2, 1, 0, 1, 2, 1, 2, 0, 1, 1, -1\} \text{ and } h(n) = \{1, -2, 1, -2\}.$$

i) For $X(k) = \{36, -4 + j9.656, -4 + j4, -4 + j1.656, -4, -4 - j1.656, -4 - j4, -4 - j9.656\}$ find

$x(n)$ using FFT Algorithm.

j) How DIT-FFT can be used in linear digital filtering and signal correlation analysis? Justify your answer with suitable examples.

k) Using partial fraction method, find the inverse z-Transform of the following transfer function,

$$H(z) = \frac{4z^{-1} - 4}{10z^{-2} + 7z^{-1} + 1}.$$

l) Differentiate between symmetric and anti-symmetric FIR filters with the help of suitable equations and application of each of these filters.

Part-III

Only Long Answer Type Questions (Answer Any Two out of Four)

Q3 Write short notes (any two) (8 x 2)

- a) Impulse invariant method
- b) Discrete Cosine Transform
- c) Windowing method in FIR filter design
- d) Properties of DFT

Q4 a) Find the DIT-FFT of $x(n) = \{1, 4, 16, 32\}$. (8 x 2)

b) Convert the analog IIR filter into the digital IIR using impulse invariant method for given transfer function $H(S) = \frac{(S+0.9)}{(S+0.9)^2 + 81}$.

Q5 The output of an impulse response is given by, $H(z) = \frac{16z(z^2 - 8)}{15z^3 - 5z^2 + 3z - 5}$, write the equation and then draw the block diagram of: (16)

- a) Direct-form-I
- b) Direct form-II
- c) Cascade Direct Form-I

Q6 a) For an analog system response $H(S) = \frac{b}{s+a}$ prove that $H(Z) = \frac{b}{\frac{2(1-z^{-1})}{T(1+z^{-1})} + a}$. (8)

b) If $S = \delta + j\Omega$ and $Z = re^{j\omega}$ (where Ω is analog frequency and ω is digital frequency) then prove that $\delta = \frac{2(r^2 - 1)}{T(r^2 + 1 + 2r \cos \omega)}$. (8)