

Registration No.:

--	--	--	--	--	--	--	--	--	--

Total Number of Pages: 02

Course: IDD (B.Tech and M.Tech)
Sub_Code: RCS4C002/RIT4C002

4th Semester Back Examination: 2024-25

SUBJECT: Design and Analysis of Algorithm

BRANCH(S): CSE, CSEAI, CSEAIML, CSEDS, CST, ELECTRICAL & C.E, ELECTRONICS & C.E, IT

Time: 3 Hours

Max Marks: 100

Q.Code: S428

Answer Question No.1 (Part-I) which is compulsory, any eight from Part-II and any two from Part-III.
The figures in the right hand margin indicate marks.

Part-I

Q1

Answer the following questions:

(2 x 10)

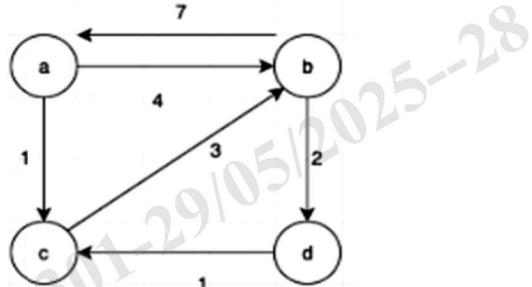
- a) Which one is bigger n^{100} or 2^n ? Justify your answer.
- b) What will be the time complexity of merge sort if all the elements are already arranged in increasing order?
- c) Differentiate between Dynamic Programming and Greedy methods.
- d) Which one is better in terms of space complexity, Quick sort or Merge sort? Justify your answer
- e) Differentiate between max heapify and min heapify?
- f) Define divide and conquer approach. Mention two examples.
- g) If the graph contains 6 nodes, then how many maximum spanning tree is possible?
- h) What are the constraints required for a Backtracking method?
- i) Define time complexity and space complexity of an algorithm.
- j) Determine whether the following problems are P, NP, or NP-Complete, Satisfiability problem, Hamiltonian cycle, TSP problem, Knapsack problem, Clique, Set partitioning.

Part-II

Q2

Only Focused-Short Answer Type Questions- (Answer Any Eight out of Twelve)

(6 x 8)


- a) Explain how the LIFO Branch and Bound technique works to solve the 8-puzzle problem.
Explain by constructing the state space tree.
- b) Solve the following recurrence relations by using Master's method.
 $T(n) = 2T(n/2) + n^3$
 $T(n) = 16T(n/4) + n$
- c) Write an algorithm for Binary search and analyse its Best, Worst, and Average case time complexity.
- d) Explain topological sorting with suitable example.
- e) Define recursion. Explain recursion tree method to solve recursion.
- f) Solve the knapsack problem for $n = 4$, $W = 40$, $(p_1, p_2, p_3, p_4) = (11, 21, 31, 33)$
 $(w_1, w_2, w_3, w_4) = (2, 11, 22, 15)$
- g) Define Big-Oh and Big-omega notation. Find Big-Oh for the function $f(n) = 4n^2 + 2n + 7$
- h) Explain dis-joint set. Write the operation supported by dis-joint set.

i) Differentiated between Prim's and Kruskal algorithm. Let G be the complete undirected graph on 4 vertices having 6 edges weights 1, 2, 3, 4, 5, 6. What is the maximum possible weight that a minimum spanning tree of G can have.

j) Apply the Bottom up Dynamic Approach to the following instance of 0/1 knapsack problem. The maximum capacity of the knapsack is 10.

Item	Weight	Profit
1	7	42
2	3	12
3	4	40
4	5	25

k) Describe Floyd Warshall algorithm for all pairs shortest path problem. Apply the same to the following Graph and discuss its time complexity.

l) Explain MERGE SORT for the given elements: 27, 18, 19, 14, 16, 23, 21, 12

Part-III

Only Long Answer Type Questions (Answer Any Two out of Four)

(16 x 2)

Q3 a) Create max-heap for following elements: 3, 2, 4, 5, 1, 6, 7. Draw diagrams by inserting one element at a time. Find the time complexity if heap is created with n elements by using insertion process. (8)

b) Find Huffman code for a - 4, b - 5, c - 7, d - 8, e - 10, f - 12, g - 20. (8)

Q4 a) Write an algorithm for Activity selection problem. Solve the problem where start times = (1, 3, 0, 5, 3, 5, 6, 8, 8, 2, 12) and Finish times = (4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14). (8)

b) Find LCS for X = ABABDC and Y = BCBCABAD. Write an algorithm for LCS. (8)

Q5 a) Discuss the relation between P, NP, NP-complete and NP-Hard problem with suitable example. (8)

b) Discuss the 4 - queen's problem. Draw the portion of the state space tree for n = 4 queens using backtracking algorithm. (8)

Q6 a)

Explain how Kruskal's algorithm can be used to find minimum spanning tree of a graph given above.

b) Find an optimal parenthesization of a matrix chain multiplication whose sequence of dimensions (orders) are < 10, 20, 50, 1, 100 >. (8)