

Registration No.:

--	--	--	--	--	--	--	--	--	--

Total Number of Pages: 02

Course: IDD (B.Tech and M.Tech)

Sub_Code: CSPC2006

4th Semester Regular Examination: 2024-25

SUBJECT: Design and Analysis of Algorithms

BRANCH(S): CE, CSE, CSEAI, CSEAIML, CSEDS, CSIT, CST, ELECTRICAL & C.E, IT

Time: 3 Hours

Max Marks: 100

Q.Code: S429

Answer Question No.1 (Part-I) which is compulsory, any eight from Part-II and any two from Part-III.

The figures in the right hand margin indicate marks.

Part-I

Q1

Answer the following questions:

(2 x 10)

- a) Solve the recurrence: $T(n) = 2T(n/2) + n$ using Master Theorem.
- b) Write the recurrence relation for binary search.
- c) What is the best case time complexity of insertion sort?
- d) When is merge sort preferred over quicksort?
- e) What is the difference between Dijkstra's and Bellman-Ford algorithms?
- f) Define the 0/1 Knapsack problem.
- g) Differentiate between Greedy and Dynamic Programming approaches.
- h) What is a state space tree?
- i) Give an example where backtracking is not an efficient approach.
- j) What is a reducibility in the context of NP problems?

Part-II

Q2

Only Focused-Short Answer Type Questions- (Answer Any Eight out of Twelve)

(6 x 8)

- a) Explain and compare Big O, Θ , and Ω notations with suitable examples.
- b) Analyze the time complexity of a recursive factorial function.
- c) Explain AVL trees and their rotations with an example.
- d) Describe disjoint set operations and their implementation using union by rank and path compression.
- e) Describe the Matrix Chain Multiplication problem and its dynamic programming solution.
- f) Explain Prim's and Kruskal's algorithms with example graphs.
- g) Solve the Longest Common Subsequence problem using dynamic programming for two given strings.
- h) Explain the Rabin-Karp algorithm with an example.
- i) Describe the working of the Knuth-Morris-Pratt (KMP) algorithm.
- j) Solve the 8-Queens problem using backtracking.

- k) Define NP-completeness and show that Subset Sum is NP-complete.
- l) Describe the approximation algorithm for the vertex cover problem.

Part-III

Only Long Answer Type Questions (Answer Any Two out of Four)

(16 x 2)

Q3	Discuss in detail the concepts of P, NP, NP-complete, and NP-hard classes. Explain with suitable examples and diagrams. Include the significance of polynomial-time reductions.	(16)
Q4	Explain the implementation and complexity analysis of Red-Black Trees. Compare with AVL Trees.	(16)
Q5	Compare Greedy and Dynamic Programming approaches using the 0/1 Knapsack problem. Provide detailed pseudocode and complexity analysis.	(16)
Q6	Discuss various string matching algorithms (Naive, Rabin-Karp, Finite Automata, and KMP) and compare their time complexities.	(16)