

Registration No.:

--	--	--	--	--	--	--	--	--

Total Number of Pages: 02

Course: IDD (B.Tech and M.Tech)
Sub_Code: EOPC2006

4th Semester Regular Examination: 2024-25

SUBJECT: Digital Systems Design

BRANCH(S): AEIE, ECE, EEVDT, ETC, ECE

Time: 3 Hours

Max Marks: 100

Q.Code: S335

Answer Question No.1 (Part-I) which is compulsory, any eight from Part-II and any two from Part-III.

The figures in the right hand margin indicate marks.

Part-I

Q1 Answer the following questions: (2 x 10)

- a) Write ‘-5’ in signed 1's complement, signed 2's complement and signed magnitude form.
- b) $X = 1010100$ and $Y = 1000011$, perform the subtraction $Y - X$ by using 2's complements.
- c) The solutions to the quadratic equation $x^2 - 11x + 22 = 0$ are $x = 3$ and $x = 6$. What is the base of the numbers?
- d) Define the term "digital signal" and give two examples.
- e) Find the complement of the function $F = X (Y'Z' + YZ)$ by taking their duals and complementing each literal.
- f) Simplify the Boolean function $F(x, y, z) = \sum(2, 3, 4, 5)$
- g) What is the main advantage of using a carry-look ahead adder over a ripple-carry adder?
- h) What is the difference between Synchronous Counter and Asynchronous Counter?
- i) Define the characteristics of digital ICs.
- j) What is the purpose of the capacitor in a DTL circuit?

Part-II

Q2 Only Focused-Short Answer Type Questions- (Answer Any Eight out of Twelve) (6 x 8)

- a) Obtain the truth table of the Boolean function $(A' + B)(B' + C)$ and express each function in sum of min terms and product of maxterms.
- b) State and prove De Morgan's laws.
- c) Simplify the Boolean function $F(A, B, C, D) = \sum(0, 2, 4, 5, 6, 7, 8, 10, 13, 15)$ using four variable K-map.
- d) Define combinational logic circuits. Design a half-adder using NAND gates and NOR gates
- e) Explain the operation of a 4- Bit by 3-Bit binary multiplier.
- f) Discuss the applications of multiplexers and demultiplexers in digital systems.
- g) Explain the operation of a 3-line to 8-line decoder with a truth table.
- h) Design a combinational circuit using a ROM. The circuit accepts a three-bit number and outputs a binary number equal to the square of the input number.
- i) Discuss the working of a 4-bit magnitude comparator and its applications

- j) What is a shift register? Design a four-bit shift register using D flip-flop and explain its operation.
- k) Design a 4-bit parallel adder using full adders. Explain its operation and timing diagram.
- l) Explain the concept of charge-coupled device (CCD) memory.

Part-III

Only Long Answer Type Questions (Answer Any Two out of Four)

(16 x 2)

Q3 a) Explain Mealy and Moore models of Finite State Machine with suitable block diagram. (8 + 8)
b) Implement the Boolean function $F(A, B, C, D) = \sum(0, 2, 5, 7, 11, 14)$ with a multiplexer.

Q4 a) A traffic signal cycles from GREEN to YELLOW, YELLOW to RED and RED to GREEN. In each cycle, GREEN is turned on for 70 Seconds. YELLOW is turned on for 5 Seconds and the RED is turned on for 75 seconds. The traffic light has to be implemented using a finite state machine (FSM). The only input to this FSM is a clock of 5 second period. Implement this FSM using minimum number of flip-flops.
b) Design a one input, one output serial 2's complementer. The circuit accepts a string of bits from the input and generates 2's complements at the output. The circuit can be reset asynchronously to start and end the operation

Q5 a) Draw the logic diagram of a four-bit binary ripple countdown counter using flip-flops that trigger on the positive edge of the clock.
b) Design a counter with the following repeated binary sequence: 0, 1, 2, 4, 6 (Use D flip - flop)

Q6 a) Discuss the characteristics of TTL and CMOS logic families, highlighting their differences. (8 + 8)
b) What is a Programmable Logic Array (PLA)? Explain its structure and programming.