

Registration No.:

--	--	--	--	--	--	--	--

Total Number of Pages: 02

Course: B.Tech
Sub_Code: RCS5C001/RCS5D007

5th Semester Back Examination: 2025-26

SUBJECT: Formal Languages and Automata Theory

BRANCH(S): CSE, CSEAIML, CSEDS, CSIT, CST, ELECTRICAL & C.E, IT, CSEAI

Time: 3 Hours

Max Marks: 100

Q.Code: U020

Answer Question No.1 (Part-I) which is compulsory, any eight from Part-II and any two from Part-III.

The figures in the right-hand margin indicate marks.

Part-I

Q1

Answer the following questions:

(2 x 10)

- a) Differentiate between NFA and DFA.
- b) Explain the purpose of the Myhill–Nerode equivalence relation.
- c) List any two algebraic identities of regular expressions.
- d) What is an inherently ambiguous grammar? Give an example.
- e) What is a Universal Turing Machine?
- f) Describe closure under union for regular languages.
- g) Distinguish between deterministic and non-deterministic PDAs with examples.
- h) What is the Halting Problem? Why is it important?
- i) Define leftmost and rightmost derivation in a CFG.
- j) Explain Instantaneous Description (ID) for PDA.

Part-II

Q2

Only Focused-Short Answer Type Questions- (Answer Any Eight out of Twelve)

(6 x 8)

- a) Construct a DFA for all binary strings containing an odd number of occurrences of substring “101”
- b) Convert the following NFA to an equivalent DFA:
States: $\{q_0, q_1\}$, Alphabet: {a, b}
Transition: $\delta(q_0, a) = \{q_0, q_1\}$, $\delta(q_0, b) = \{q_0\}$, $\delta(q_1, a) = \{q_1\}$, $\delta(q_1, b) = \emptyset$
- c) Convert the regular expression $(0+1)^*011$ into a minimal state automaton.
- d) Using the Pumping Lemma, show that $L = \{0^n 1^m 0^n \mid n, m \geq 1\}$ is not regular.
- e) Simplify the grammar and convert it into CNF: $S \rightarrow AS \mid aB; A \rightarrow aA \mid a; B \rightarrow bB \mid b$.
- f) Analyze why deterministic PDAs cannot recognize all CFLs with examples.
- g) Construct a PDA for $L = \{a^n b^n c^m \mid m, n \geq 1\}$ and explain acceptance by empty stack.
- h) Explain variants of Turing Machines.
- i) State and prove Kleene's Theorem.

- j) Derive a regular expression for the FA of a binary counter modulo 3.
- k) Prove every deterministic CFL is unambiguous; converse false.
- l) Construct a TM to compute $f(n) = 2n$ on unary input.

Part-III

Only Long Answer Type Questions (Answer Any Two out of Four)

Q3 a) Create the minimal DFA for $L = \{w \in \{0,1\}^* \mid w \text{ interpreted as binary } \equiv 3 \pmod{7}\}$. (8)
 b) Prove the Myhill–Nerode condition and evaluate minimal DFA generation. (8)

Q4 a) What is a Mealy Machine? Convert following Mealy Machine to Moore Machine. (8)

Present State	Next State			
	Input a = 0		Input a = 1	
	State	Output	State	Output
q_1	q_3	0	q_2	0
q_2	q_1	1	q_4	0
q_3	q_2	1	q_1	1
q_4	q_4	1	q_3	0

b) Design a regular expression for binary strings divisible by 6 and justify correctness. (8)

Q5 a) Convert $S \rightarrow aSbS \mid bSaS \mid \epsilon$ into CNF and evaluate blow-up. (8)
 b) Create an unambiguous grammar for $L = \{a^n b^m c^m \mid n, m \geq 1\}$ and justify correctness. (8)

Q6 a) Explain how a TM computes integer functions. (8)
 b) Evaluate and prove that MPCP reduces to PCP. (8)