

Registration No.:

--	--	--	--	--	--	--	--	--	--

Total Number of Pages: 03

Course: B.Tech
Sub_Code: RAU4C001 / RME4C001

4th Semester Back Examination: 2024-25
SUBJECT: KINEMATICS & DYNAMICS OF MACHINES
BRANCH(S): AUTO,MECH, MMEAM

Time: 3 Hours

Max Marks: 100

Q.Code: S439

Answer Question No.1 (Part-I) which is compulsory, any eight from Part-II and any two from Part-III.

The figures in the right hand margin indicate marks.

Part-I

Q1 Answer the following questions: (2 x 10)

- a) Differentiate between Turning pair and sliding pair.
- b) Differentiate between completely constrained motion and incompletely constrained motion.
- c) What are the methods for determining the velocity of a point on a link?
- d) A slider sliding at 10 cm/s on a link, which is rotating at 60 rpm, is subjected to Coriolis acceleration of magnitude? Find it.
- e) In a screw jack, the helix angle of thread is ' α ' and friction angle is ' \emptyset '. Show that its efficiency is maximum when $2\alpha = (90^\circ - \emptyset)$.
- f) Define slip of the belt.
- g) What are the different types of mechanical brakes.
- h) Explain the terms I) Module II) Addendum
- i) Write down the difference between simple gear train and compound gear train.
- j) State D'Alembert's Principle.

Part-II

Q2 Only Focused-Short Answer Type Questions- (Answer Any Eight out of Twelve) (6 x 8)

- a) With the help of a neat sketch explain the working of a reverted gear train. Give at least two applications of the same.
- b) What is the difference between piston effort, crank effort, and crank-pin effort?
- c) Sketch and describe the four bar chain mechanism. Why it is considered to be the basic chain?
- d) Obtain the conditions for the maximum power transmitted by a belt from one pulley to another.
- e) Describe with help of a neat sketch the construction and working of a rope brake absorption dynamometer.
- f) With a neat sketch, describe a single shoe brake. What is the advantage of double shoe brake over single shoe brake.

g) Prove that the torque transmitted by a cone clutch when intensity of pressure is uniform, is given by $T = \frac{2\mu W}{3\sin\alpha} \left(\frac{r_1^3 - r_2^3}{r_1^2 - r_2^2} \right)$, Where W = Axial Load, α = Semo Cone-angle, μ = Co-efficient of friction, r_1 = Maximum Radius, r_2 = Minimum radius of contact surface

h) If interference between two involute gears is to be avoided then prove that the maximum length of arc of contact will be equal to $(r + R) \tan\theta$, where r = pitch circle radius of pinion R = Pitch circle radius of wheel and θ = Pressure angle.

i) Derive an expression for the effort required to raise a load with a screw jack taking friction into consideration.

j) Write short notes on Coriolis acceleration component.

k) Derive an expression for the length of a belt in a cross belt drive.

l) Prove that the correction couple (T_c) is given by $T_c = m \times L_1 \times (I - L) \times \alpha$
Where m = mass of rigid body, L_1 = Distance of mass m_1 from the C.G of the body
 L = Distance between two masses m_1 and m_2 which form a true dynamically equivalent system
 I = Distance between two masses which are placed arbitrarily
 α = Angular acceleration of the rigid body

Part-III

Only Long Answer Type Questions (Answer Any Two out of Four)

(16 x 2)

Q3 Show that, in a band and block brake, the ratio of the maximum and minimum tensions in the brake straps is (16)

$$\frac{T_0}{T_n} = \left(\frac{1 + \mu \tan \theta}{1 - \mu \tan \theta} \right)^n$$

Where,

T_0 = Maximum Tension

T_n = Minimum Tension

μ = Coefficient of friction between the blocks and drum

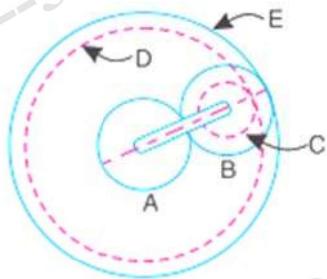
2θ = Angle subtended by each block at the centre of the drum

Q4 a) For a flat belt drive prove that (10)

$$\frac{T_1}{T_2} = e^{\mu\theta}$$

Where T_1 = Tension on the tight side of the belt

T_2 = Tension on the slack side of the belt


μ = Co-efficient of friction between the belt and pulley surface

θ = Angle of contact between the belt and the pulley

b) Determine the maximum power that can be transmitted using a belt of $100 \text{ mm} \times 10 \text{ mm}$ with an angle of lap 160° . The density of the belt is 10^{-3} gm/mm^3 and co-efficient of friction may be taken as 0.25. The tension in the belt should not exceed 1.5 N/mm^2 . (6)

Q5 How are velocity and acceleration of the slider of a single slider crank chain determined analytically? Derive analytically angular velocity and angular acceleration of the connecting rod. **(16)**

Q6 Figure shows an epicyclic gear train. Pinion A has 15 teeth and is rigidly fixed to the motor shaft. The wheel B has 20 teeth and gears with A and also with the annular fixed wheel E. Pinion C has 15 teeth and is integral with B (B, C being a compound gear wheel). Gear C meshes with annular wheel D, which is keyed to the machine shaft. The arm rotates about the same shaft on which A is fixed and carries the compound wheel B, C. If the motor runs at 1000 rpm., find the speed of the machine shaft. **(16)**

