

Registration no:

--	--	--	--	--	--	--	--	--	--

Total Number of Pages: 02

**B. Tech
REL5D005**

**5th/7th Semester Regular/Back Examination: 2025-26
RENEWABLE POWER GENERATION SYSTEMS
CSE, CSEAI, CSEAIML, CSEDS, CST, EEE, ELECTRICAL**

Time: 3 Hours

Max Marks: 100

Q Code: U403

Answer all questions of Part-A, any 08 questions of (Part-B) and any two from Part-C.

The figures in the r

Right-hand margin indicate marks.

Part- A

Q1 Objective Answer Type Questions (Answer All) (02x10)

- a)** Define dispersed generation (DG) and give one example.
- b)** What is solar insolation? Briefly explain.
- c)** A 300 W photovoltaic module contains 72 series-connected cells, arranged as three strings of 24 cells each, with one bypass diode per string. Under STC (1000 W/m²), the module produces its rated power. If one string is shaded such that its irradiance drops to 200 W/m², while the other two strings receive full irradiance, estimate the new maximum power output of the module.
- d)** A solar cell is basically a current source, controlled by flux of radiation: True or False. Comment with justification.
- e)** What is a tip-speed ratio in wind turbines?
- f)** List two differences between induction and synchronous generators used in wind turbines.
- g)** State any two methods used for reactive power compensation in wind energy systems.
- h)** What is anaerobic digestion, and how is it used in biogas production?
- i)** What is pyrolysis? Briefly explain.
- j)** Mention two advantages of electric vehicles.

Part- B

Q2 Focused-Short Answer Type Questions- (Answer Any Eight) (06x08)

- a)** Explain the concept of distributed energy systems and dispersed generation (DG). Discuss their advantages and challenges in the context of renewable energy integration.
- b)** Explain about Solar Cell, Solar PV Module, Solar PV Panel and Solar PV Array.
- c)** Describe the different types of solar collectors used in thermal systems. Discuss their performance characteristics and typical applications.

- d) Explain the effect of partial or complete shadowing on a solar cell in a PV module.
- e) What do you mean by pitch angle? How pitch angle can be controlled in wind energy conversion system.
- f) Explain the aerodynamic principles governing wind rotor operation.
- g) Determine the maximum power a wind turbine may produce at the following wind speeds: 1, 5 and 10 m/s. Assume Betz limit as 0.593 and air density (approximately 1.225 kg/m^3 at sea level).
- h) Compare and contrast grid-connected and self-excited induction generators in wind energy systems.
- i) Describe the process of biomass pyrolysis.
- j) Describe anaerobic digestion with a neat diagram. Explain the design considerations for biogas digesters.
- k) Why reactive power compensation is required in wind farms and how is it provided? Explain.
- l) Compare the technical features of hybrid electric vehicles (HEVs) and battery electric vehicles (BEVs).

Part-C

Long Answer Type Questions (Answer Any Two)

Q3 (8+8)

- (a) Explain, what is maximum power point tracking (MPPT) in PV system?
- (b) Discuss solar thermal applications: water heating, space heating, and solar cookers.

Q4 (10+6)

- (a) Explain in detail the layout and working of wind electricity generation power plant.
- (b) With diagrams, explain the operation of DFIG-based wind energy systems and discuss reactive power compensation.

Q5 (2+6+8)

What is biomass energy? State the advantages and disadvantages of Biomass energy. Explain the process of commercial production of ethanol from biomass.

Q6 (10+6)

- (a) Explain with a neat schematic the working of a Diesel-PV hybrid system.
- (b) A hybrid system consists of a PV array (1.2 kW at STC) and a wind turbine (rated 1.5 kW at 12 m/s). If irradiance is 700 W/m^2 and wind speed is 8 m/s (turbine output at 8 m/s = 40% of rated), calculate:
 - (i) PV output power
 - (ii) Wind output power
 - (iii) Total hybrid system output.