

Registration No.:

--	--	--	--	--	--	--	--	--

Total Number of Pages: 03

Course: B.Tech/IDD
Sub_Code: CSPC3001

5th Semester Regular Examination: 2025-26

SUBJECT: Theory of Computation

BRANCH(S): CE, CSE, CSEAI, CSEAIML, CSIT, CST, IT, CSE

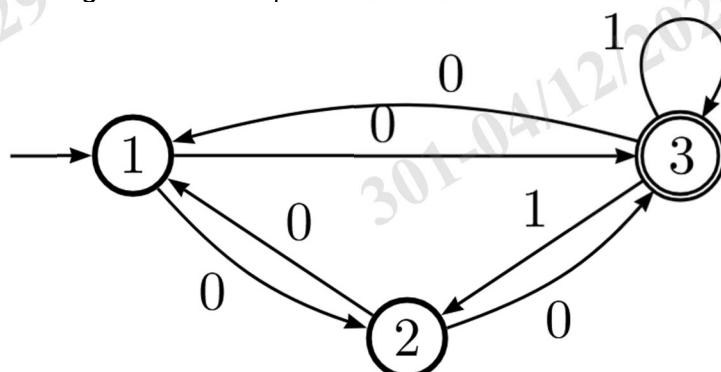
Time: 3 Hours

Max Marks: 100

Q.Code: U277

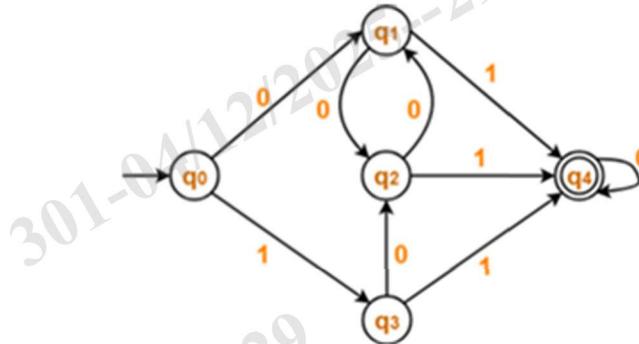
**Answer Q1 (Part-I) which is compulsory, any eight from Part-II and any two from Part-III.
The figures in the right-hand margin indicate marks.**

Part-I


Q1 Answer the following questions: (2 x 10)

- a) Define alphabet and language with examples.
- b) Construct a transition diagram for a DFA that accepts all strings ending with 01.
- c) Write any two identities of regular expressions.
- d) Give the right-linear grammar for the language {strings ending with a}.
- e) Define leftmost and rightmost derivations with suitable example.
- f) Draw a simple transition diagram of a PDA that accepts $a^n b^n$ by empty stack.
- g) Define recursively enumerable language. How it is different from recursive languages.
- h) Define Turing machine. Draw a schematic diagram of a Turing Machine tape and head movement.
- i) Define NP-complete problem.
- j) Write the four levels of the Chomsky hierarchy of Languages.

Part-II


Q2 Only Focused-Short Answer Type Questions- (Answer Any Eight out of Twelve) (6 x 8)

- a) Convert the following NFA to an equivalent DFA and draw the transition diagram:

- b) Explain ϵ -closure with an example. Construct an NFA with ϵ transitions for the regular expression $a(b+c)^*$.

c) Minimize the following DFA. Show all partition steps.

d) Convert the regular expression $(ab + b)^*$ to an NFA. Convert the obtained NFA to a DFA and draw the transition diagram.

e) Define pumping Lemma for regular Languages. Use the Pumping Lemma to show that $L = \{ a^n b^n \mid n \geq 0 \}$ is *not* regular.

f) Convert the following left-linear grammar to right-linear grammar. Convert the right-linear grammar into an equivalent DFA:

$$S \rightarrow Sa \mid Ab \mid a$$

$$A \rightarrow Ab \mid \epsilon$$

g) Convert the grammar

$$S \rightarrow aSb \mid ab$$

into Chomsky Normal Form and Greibach Normal Form.

h) Construct a PDA with transition diagram that accepts $L = \{ ww^R \mid w \in \{a, b\}^* \}$ by empty stack.

i) Explain ambiguity in grammars. Show by derivations that the grammar

$$E \rightarrow E+E \mid E^*E \mid id$$

is ambiguous.

j) Design a Turing Machine to increment a binary number by 1. Draw the full transition diagram.

k) Explain mapping reducibility. Show that HALT_TM is reducible to ATM.

l) Explain with examples the complexity classes P, NP, and NP-Complete. Give one problem each in P, NP, and NP-Complete.

Part-III

Only Long Answer Type Questions (Answer Any Two out of Four)

Q3

Write a regular expression for the language:

(16)

$$L = \{ w \mid w \in \{0, 1\}^*, w = \langle n \rangle, n \in \mathbb{N}, n \equiv 4 \pmod{5} \}$$

In other words, L is the language of binary strings that encode natural numbers that have remainder 4 when divided by 5. For example, $1001 = \langle 9 \rangle \in L$, but $110 = \langle 6 \rangle \notin L$. Ignore leading zeros (so the strings 00010 and 0010 are both encodings of the same natural number, $\langle 2 \rangle$).

Q4 a) Design a DPDA (deterministic PDA) for the language (8)
 $L = \{ a^n b^n c^m \mid n \geq 1, m \geq 0 \}$
showing its full formal transition structure and transition diagram.

b) Convert the following grammar to Greibach Normal Form (GNF): (8)
 $S \rightarrow AB \mid a$
 $A \rightarrow aA \mid b$
 $B \rightarrow bB \mid a$

Q5 a) Construct a Turing Machine to decide the language (8)
 $L = \{ 0^n 1^n 0^n \mid n \geq 1 \}$
Draw the complete transition diagram and explain every tape movement.

b) Prove that Post Correspondence Problem (PCP) is undecidable using reduction from ATM. (8)

Q6 a) Describe a Turing Machine that recognizes the language (8)
 $L = \{ w0w \mid w \in \{0,1\}^* \}$
Draw the state diagram.

b) Explain the Cook–Levin theorem. Using diagrams, reduce 3-SAT to CLIQUE showing each conversion step. (8)